Lindsey Sensors

High Accuracy Medium Voltage Sensors & Accessories for Overhead & Underground Distribution

Hallmarks of Lindsey Systems' Sensors

Reliable & Safe

> 10,000 Years

Lindsey sensors have demonstrated a 10,000 year MTBF over the past 35 years.

ImA

Most voltage and current sensors produce an output of only 10V and less than 1mA of current to ensure safe handling.*

0.2%

High Accuracy Sensors[™] offer 0.2% voltage accuracy, the best in the industry.

*Not applicable to sensor models with 1A or 5A current outputs, or where the specified voltage output is greater than 10V at rated line current.

Table of Contents

Introduction to Lindsey Sensors	4
Overhead Line Sensors	
GEN2 Sensors	6
Polysil Sensors	10
SVMI Sensors	16
VMI Sensors	18
Underground Sensors	
ElbowSense TM Voltage Sensor	20
ElbowSense Current Sensor	24
SF6 Voltage Sensor	27
Underground Power Supply	28
Sensor Cables and CasTite [™] Junction Boxes	30

Voltage and Current Sensors by Lindsey Systems

For over 35 years, voltage and current sensors by Lindsey Systems have served a crucial role in medium voltage distribution networks. Well-known for exceptional reliability and long life, they are depended upon for their accuracy in voltage and current monitoring applications. Sensors by Lindsey Systems are the number one choice for substation, overhead, pad-mount, submersible, SF6 or OEM applications.

Sensing Elements

All Lindsey Systems' sensors use one or more of the following voltage and current sensing elements. With the exception of window CT-based sensors, the output current of all sensing elements is typically limited to <1mA to ensure exceptionally low energy levels in the event of contact during installation.

Voltage Sensing

High precision resistive voltage divider networks are used in all voltage sensors to provide exceptionally accurate analog voltage outputs. For overhead applications, Lindsey High Accuracy Sensors[™] offer the industry's highest accuracy at 0.2%, with 0.5% accuracy standard for less demanding applications.

All ElbowSense[™] voltage sensors for pad-mount and underground applications are available with 0.3% metering and 0.5% standard accuracy versions.

All voltage sensor outputs are linear with the primary voltage level applied. High ratio (=>1400:1) sensors have flat frequency response through the 20th harmonic with zero phase shift providing excellent harmonic performance.

Current Sensing

Two different current sensing methods are used depending on the actual product.

MultiCore current sensing

Two current sensing coils are used to measure current. This technique produces an accurate (1%) voltage output proportional to the primary current, typically 10V secondary at 600A primary.

The output of MultiCore sensors is linear with input current, making them ideal to accurately represent fault current magnitudes. MultiCore current sensors are not recommended for harmonic current measurement applications as their frequency response is non-linear outside of rated fundamental frequency.

Window CTs

Iron core window CTs produce a higher accuracy measurement (to 0.3%) as well as flat frequency response through 3 kHz (+/-2% @ 3KHz) making them ideal for harmonic measurement applications.

Both 1A and 5A output versions are available.

Overhead Sensors

Overhead line sensors are available in a variety of configurations. The accuracy of Lindsey Systems' voltage sensors have made them the gold standard for Volt Var Optimization (VVO) and Conservation Voltage Reduction (CVR) applications.

The construction of line post and standoff sensors meet all the electrical and mechanical requirements of equivalent insulators providing endless installation options.

Underground Sensors

Lindsey Systems offers the widest range of voltage and current sensors for underground and pad-mount applications, including:

- Elbow and tee-body voltage sensors for 200A IEEE cable systems
- Plug-style voltage sensors for 600A IEEE cable systems
- Split-core and ring type current sensors
- Voltage sensors for SF6 switchgear
- Voltage sensing bus standoff insulators

Note: Sensor accuracy is the variation from the as-tested output ratio (as stamped on each sensor's nameplate) across the stated accuracy temperature range. For more information, refer to Lindsey Systems' publication number 09R-017 SENSOR ACCURACY.

Introduction to Lindsey Sensor Family

Lindsey Systems' Sensor Family Quick Reference

Overhead Voltage Sensors

MultiCore GEN2 Page 6

MultiCore Page 10

Busbar Page 10

Tube Page 10

Clamp-top Page 10

Specialty Voltage Sensors

Standoff Page 18

Page 27

Underground Voltage Sensors

Plug Page 20

Current Sensors

Split-core Page 24

Ring Page 24

Neutral Page 24

Underground Page 28

Cable & Junction Boxes

Cables Page 30

CasTite Junction Boxes Page 30

GEN2 Sensors

The Accuracy you need. The Reliability you want. For over 35 years, Lindsey current and voltage sensing post insulators have been the standard for smart grid applications. Lindsey GEN2 line post sensors feature hydrophobic cycloaliphatic epoxy construction, providing superior performance in high pollution and wet environments.

Standard or High Accuracy GEN2 Sensors

Lindsey's standard GEN2 sensors offer 0.5% voltage accuracy and no phase shift. High Accuracy SensorsTM offer 0.2% accuracy from $-40/+55^{\circ}$ C; the industry's best.*

These sensors are ideal for feeder voltage control based on Volt/VAR Optimization (VVO) or conservation voltage reduction (CVR) applications, which rely on accurate voltage measurements. Greater accuracy allows for finer control of the voltage profile and maximizes the economic benefit which can be realized by these programs.

GEN2 sensors are completely passive designs. No external power source is required to power sensor electronics.

All GEN2 Sensors Include:

- 1% current accuracy with no phase shift
- Voltage and current accuracy independent of weather and conductor diameter
- Hydrophobic cycloaliphatic epoxy construction provides superior performance in high pollution and wet environments
- Physical construction that meets all the electrical and mechanical requirements of post insulators

Lineman Friendly Features

- Less than 1/2 the weight of Lindsey Systems' Polysil insulation based sensors
- Touch-friendly outputs. Low voltage, low current sensor outputs eliminate the risk of high voltages as may be found with conventional CT-based sensors. This allows GEN2 sensors to be installed on energized lines.
- Glove friendly cables use bayonet-style waterproof connectors that "snap" when closed, eliminating over-and under-tightening (Figure 1).

Figure 1: Bayonet-Style Waterproof Connector

*High Accuracy Sensors require the use of Lindsey Systems' High Accuracy gold-line cables to ensure accuracy across the entire temperature range.

OVERHEAD: GEN2 Sensors

Hot Stick Friendly Conductor Keepers

Conductor keepers establish the connection between the conductor and the sensor's internal sensing circuits. Lindsey provides two patent pending hot stick friendly versions.

Standard Hot Stick Keeper

This keeper design** is attached to the sensor via one through-bolt which acts as a hinge. This allows the conductor to be placed in the sensor saddle while the keeper is left open (see Figure 2).

The ring on the keeper provides a convenient point of connection to a hot stick for the purpose of pushing the keeper into the closed position (see Figure 3).

The bolts may then be tightened to finish the connection.

Figure 2: Standard Hot Stick Keeper Shown Open

Figure 3: Standard Hot Stick Keeper Shown Closed

Trunnion Keeper

The trunnion clamp keeper** is a full trunnion style conductor clamp adapted to fit Multicore style sensors. (see Figure 4).

The trunnion clamps are affixed to either side of the sensor on the ground. Once in the air, the conductor is placed through the opened clamps and into the conductor saddle. The clamps' keepers are closed by turning the ring from below and away from the sensor using a hot stick. This allows the lineman to be located at a suitable distance from the line during final installation.

Figure 4: The Trunnion Keeper

GEN2 Voltage and Current Sensors by Lindsey Systems

Electrical Ratings						
Insulation Class	15 kV	25 kV	35 kV			
Impulse (BIL)	110 kV	150 kV	200 kV			
Leakage Distance (in./mm)	19.9/505	29.4/747	37.5/953			
Dry Arc Distance (in./mm)	8.8/223	11.9/302	16.1/410			
Overall Height (A) (in./mm)	12.4/315	15.5/395	19.8/502			
Height to Conductor Saddle (B) (in/mm)	9.4/238	12.6/319	15.8/400			
Withstand* (60HZ, 1 min.)	34 kV	40 kV	50 kV			
Corona (extinction)	11 kV	19 kV	26 kV			
Operating Temperature	-5	50° C to +80°	С			
Stated Accuracy Temperature	-40° C to +55° C					
Conductor Diameter	Two-sided keeper accommodates 0.18" - 1.25" (4.6-32 mm) diameter					
Construction	Hydrophol	oic cycloaliph	atic epoxy			

NOTE: Calibration of current and voltage signals is virtually unaffected by conductor material, size, temperature, armor rod, adjacent phases, line angle or insulator contamination.

*Withstand test is not performed on sensors with voltage sensing. Specify 50 HZ or 60 HZ.

Voltage Signal Output

Ratio	By catalog number
Output Impedance	Calibrated for a 1 $M\Omega$ load
Accuracy**	GEN2: +/- 0.5% High Voltage Accuracy GEN2: +/-0.2%
Phase Shift	0 degrees for sensors with ratios of 1400:1 or greater, - 2 degrees per 10 feet of cable for lower ratios

Mechanical Ratings

Insulation Class	15 kV	25 kV	35 kV
Cantilever Strength (lbs./kg)	2800/1270	2800/1270	2800/1270
Weight (lbs./kg)	18/8.2	20/9.1	24/10.9
Shipping Weight (lbs./kg)	20/9.1	22/10.0	26/11.8

Current Signal Output

Ratio	600A : 10 Volts
Output Burden/Load	Calibrated for 100 kOhm or greater load
Accuracy**	+/-1%
Phase Shift	0 degrees nominal, +/- 1.5 degrees
Open Circuit Voltage	10V at 600A line current

**Accuracy guaranteed only when used with Lindsey supplied cables. GEN2 High Accuracy Sensors[™] require the use of gold-line High Accuracy cables.

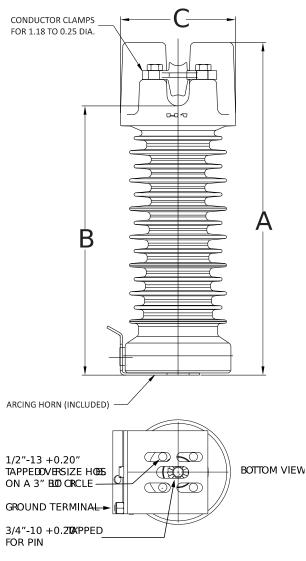


Figure 5: Dimension Drawing of GEN2 Sensor

OVERHEAD: GEN2 Sensors

GEN2 Ordering Table

Part Number Sequence: <u>A</u> <u>B</u> <u>C</u> / <u>D</u> <u>E</u> 0 <u>F</u> <u>G</u>

	Α	_	В			С		/		D			Ε		F	(G	
	amily GEN2		/oltage Class	0	Leak Standard	kage Distan Leakage	ice			Current Output			Voltage vider Ratio			Freq	uency	
9E6 9EHA6	GEN2 High	5	15 kV 25 kV			GEN2	GEN2 High Accuracy 29.4 in.		E0 E1	Non 600A :	e	0 1 2	None 1400:1 2200:1			Blank /50 HZ	60 HZ 50 HZ	
		7	35 kV		15 kV 25 kV	(505 mm) 29.4 in.	29.4 m. (747 mm) 29.4 in.					3 4	3300:1 10,000:1					
					25 kV 35 kV	(747 mm) 36.5 in. (927 mm)	(747 mm) 36.5 in. (927 mm)					5^ 6^ 7^	60:1 120:1 166:1					
				2 High Leakage		2 High Leakage	High Leakage						8^	200:1				
					15 kV	29.4 in. (747 mm)	36.5 in. (927 mm)					x	Special					
					25 kV	36.5 in. (927 mm)	36.5 in. (927 mm											
	EXAM	PL	E	3	35 kV Extra Higi	N/A	N/A							S	eeper			
				3	15 kV	36.5 in. (927 mm)	N/A							6 	Hot stick Frunnion			
	•																	
91	E 6		5			0		/		E1			1 (0	6	B	ank	

Order Example: The 9E650/E1106 is a GEN2 sensor, 15 kV class, standard leakage distance, with a 600A:10V current output ratio, and a 1400:1 voltage output ratio. The sensor includes the standard hotstick keepers.

[^]These options are not available for the GEN2 High Accuracy Sensors[™].

Table 1: Accessories for GEN2 Sensors

Part #	Description
2004	Horizontal mounting base
2040	3/4" x 2 3/16" mounting stud for metal cross-arms
2041	3/4" x 7" mounting stud for wood cross-arms
R-23741	Extra Hot stick keeper set (2 keepers and bolts)
R-23865	Extra Trunnion keeper set
9609-UNIV	Arcing Bracket (horn) for GEN2 sensor (included)

Polysil Overhead Line Post Voltage & Current Sensors

Accurate, Real-Time Measurement. Lindsey Systems' line post sensors have provided exceptionally reliable and highly accurate voltage and current monitoring for substation, overhead and pad-mount distribution applications since 1982. These sensors are constructed out of Polysil, an advanced silica/resin composite insulation material developed in conjunction with EPRI.

Line post sensors are available in various sensor configurations and in four different physical packages. All sensors can be used in place of any vertical or horizontal line post insulator. This provides great flexibility both in installation and in applications.

Sensing Configurations

- Voltage-only sensing using precision resistive divider sensors providing 0.5% accuracy.
- Current-only sensing using either Lindsey Systems MultiCore or window CT sensors. MultiCore sensors offer fundamental frequency accuracy of 1%. Window CTs provide up to 0.3% accuracy and flat frequency response through the 40th harmonic.
- Voltage and current sensors, incorporating a combination of the above sensors.
- Calibration of current and voltage signals is virtually unaffected by conductor material, size, temperature, armor rod, adjacent phases, line angle or insulator contamination.

Voltage Signal Output

00	•
Ratio	By catalog number
Output Impedance	Calibrated for a 1 $M\Omega$ load
Accuracy*	+/- 0.5% from -40° C to +55°C
Phase Shift	0 degrees for sensors with ratios of 1400:1 or greater, -2 degrees per 10 feet of cable for lower ratios

	MultiCore	Window CT				
Accuracy*	+/-1%	1% 0.3% 2%				
Phase Shift	0 degrees nominal, +/- 1.5 degrees	0 degrees nominal, +/- 0.5 degrees				
Operating Temperature Range	-45° C to +80° C	-45° C to +80° C				
Stated Accuracy Temperature	-40° C to +55° C	-40° C to +55° C				
Ratio	600A : 10 Volts	600A : 5A 600A : 1A 300A : 5A				
Burden	Calibrated for 100 kOhm or greater load	0.9 Ohms, Max.	22.5 Ohms, Max.	0.22 Ohms, Max.		
Open Circuit Voltage @600A	10V at 600A line current	14.5 88 8				
*Accuracy guaranteed only when u	sed with Lindsey supplied cables.					

Current Signal Output

OVERHEAD: Polysil Sensors

Physical Configurations

MultiCore

The MultiCore style design allow the conductor to be placed into the sensor's central saddle, eliminating the need to cut the conductor or make a jumper. This style sensor is ideal for live line installation.

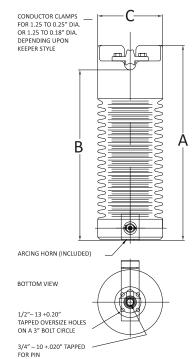
MultiCore style sensors are only available with Lindsey Systems' MultiCore style current sensor with a 600A:10V output ratio.

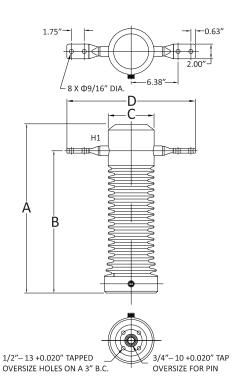
Substation/Busbar

This style sensor uses higher accuracy window CT current sensors. Both 2-hole (600A) and 4-hole (1200A) NEMA pad versions are available. This style sensor is ideal for substation or pad-mount applications. The ability to make a fixed connection also makes this style of sensor suitable for use as a component in automated, overhead switches.

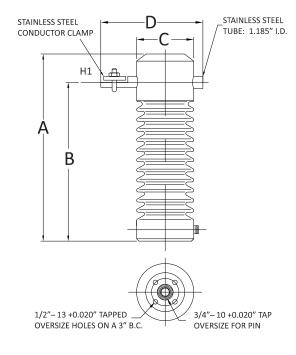
Tube-Type

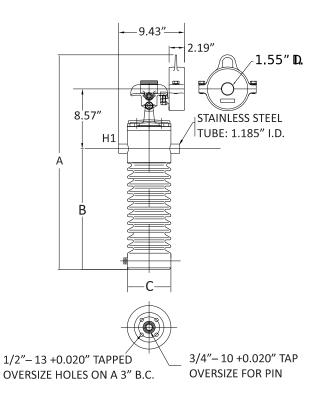
The tube-type design provides a path for passing a conductor through the sensor body and then clamping to the integral stainless steel tube. This design uses higher accuracy window CT current sensors. This design is practical for many switchgear and substation applications.


Clamp-Top


Like the MultiCore style sensor, the clamp-top design eliminates the need to cut the phase conductor. The use of window CT current sensors provides higher accuracy and harmonic current measurement capabilities than the MultiCore style unit.

Polysil Dimensions




MultiCore	I	lb./kg		
Voltage Class	А	В	С	Weight
15kV	13.4/339.7	10.6/269.9	7.3/184.2	37.0/16.8
25kV	16.8/425.5	14.0/355.6	7.3/184.2	48.0/21.8
35kV	21.9/555.6	19.1/485.8	7.3/184.2	60.0/27.2

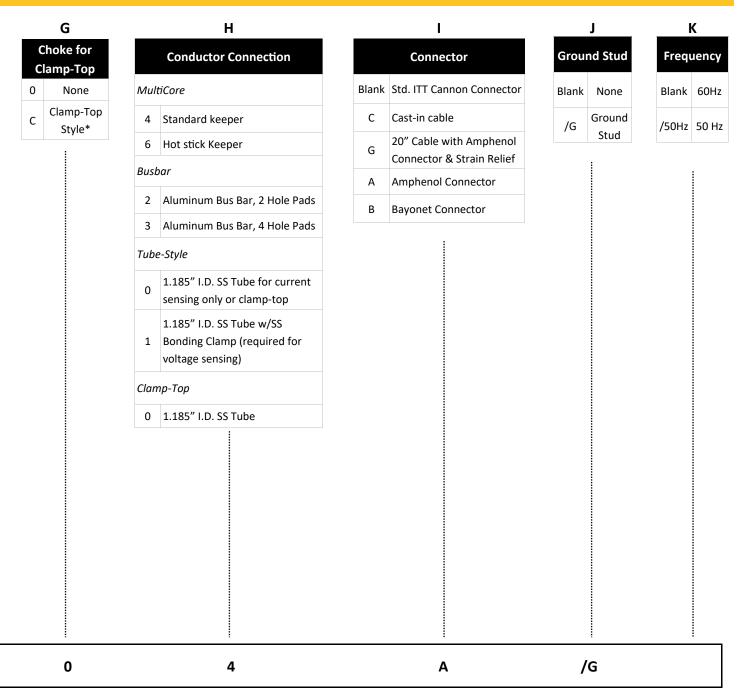
Busbar		lb./kg							
Voltage Class	А	В	С	D	Weight				
15kV (2-hole)	14.0/355.6	10.6/269.9	6.3/158.8	17.5/444.5	29.0/13.2				
25kV	16.2/411.2	12.8/325.4	6.3/158.8	17.5/444.5	33.0/15.0				
35kV	20.4/517.5	17.3/438.2	6.3/158.8	17.5/444.5	43.0/19.5				
46kV	23.0/584.2	19.4/492.1	6.3/158.8	17.5/444.5	65.0/29.5				
Note: For sens	Note: For sensors with 4-hole NEMA pads, add 0.5" (12mm) to D column.								

Mechanical Ratings									
Insulation Class	15 kV	25 kV	35 kV	46 kV					
Cantilever Strength (lbs./kg)	2800/1270	2800/1270	2800/1270	2800/1270					
Weight (lbs./kg):									
MultiCore	37 (16.8)	48 (21.8)	60 (27.2)	N/A					
Busbar	29 (13.2)	33 (15.0)	43 (19.5)	65 (29.5)					
Tube-Style	29 (13.2)	33 (15.0)	43 (19.5)	60 (27.2)					
Clamp-Top	47 (21.3)	51 (23.1)	61 (27.7)	N/A					

OVERHEAD: Polysil Sensors

Tube-Style	Inches/mm			lb./kg	Clamp-Top	Inches/mm				lb./kg	
Voltage	A	В	С	D	Weight	Voltage Class	А	В	С	D	Weight
15kV	14.0/355.6	10.6/269.9	6.3/158.8	10.1/257.2	29.0/13.2	15kV	24.1/611.9	10.6/269.9	6.3/158.8	9.4/239.5	47.0/21.3
25kV	16.2/411.2	12.8/325.4	6.3/158.8	10.1/257.2	33.0/15.0	25kV	26.3/667.3	12.8/325.4	6.3/158.8	9.4/239.5	51.0/23.1
35kV	20.6/522.3	17.2/436.6	6.3/158.8	10.1/257.2	43.0/19.5	35kV	30.7/778.5	17.2/436.6	6.3/158.8	9.4/239.5	61.0/27.7
46kV	22.5/571.5	19.4/492.1	6.3/158.8	10.1/257.2	60.0/27.2						

Electrical Ratings						
Insulation Class	15 kV	25 kV	35 kV	46 kV		
Impulse (BIL)	110 kV	150 kV	200 kV	250 kV		
Leakage Distance (in./mm)	15/381	19.3/490	28.1/714	39.0/991		
Dry Arc Distance (in./mm)	8.3/211	10.4/264	15.0/381	17.1/434		
Withstand* (60HZ, 1 min.)	34 kV	40 kV	50 kV	75 kV		
Corona (extinction)	11 kV	19 kV	26 kV	33 kV		
Operating Temperature	-45° C to +80° C					
Stated Accuracy Temperature		-40° C t	o +55° C			
MultiCore Conductor Diameter						
Standard 2-sided keeper		0.25-1.25"	(6.3-32 mm)			
Hot stick 2-sided keeper	0.18" - 1.25" (4.6-32 mm)					
Construction Polysil						
*Withstand test is not performed on sensors with voltage sensing. Specify 50 HZ or 60 HZ.						


Polysil Ordering Table

Part Number Sequence: <u>A B C / D E F G H I J K</u>

mily								
	Insulator Class	Leakage	Distance	Style		Current	Ň	Voltage
Polysil	5= 15kV	0= Standard Leaka	age (in./mm)	C = Clamp Top	Ou	tput Signal	Div	vider Ratio
	(BIL 110kV)			S = Busbar or Tube	0	None	15	kV Options
	6= 25kV	MulitCore Style	15kV: (15.8/401)		1	600A:10V	0	None
	(BIL 150kV)		25kV: (24.5/600)	E = MultiCore**			1	1400:1
	7= 35kV		35kV: (36.5/927)	:	2	600A:6V	2	2200:1
	(BIL 200kV)	Other Styles	15kV: (15.8/401)		3	600A:5A	3	3300:1 10,000:1
	8= 46kV		25kV: (19.3/490)		4	600A:1A	4	60:1
	(BIL 250kV)***		35kV: (28.1/714)			300A:5A	X	Special
	LL		46kV: (39.0/990)		5		25	kV Options
		2=High Leakage	(in./mm)		6	300A:10V	0	None
					Х	Special	1	1400:1
		MultiCore Style	15kV: (24.5/600)			:	2	2200:1
			25kV: (36.5/927)				3	3300:1
		Other Styles	15kV: (19.3/490)				4	10,000:1 120:1
			25kV: (24.0/610)				X	Special
			35kV: (31.8/808)					kV Options
		3=Extra High Leak					0	None
		MultiCore Style	15kV: (36.5/927)				1	1400:1
							2	2200:1
		Other Styles	15kV: (24.0/610)				3	3300:1
			25kV: (28.1/714)				4	10,000:1
		4=Special (in./mn	n)				/ X	166:1 Special
		Other Styles	35kV: (39.0/990)					kV Options
		:					0	None
							4	10,000:1
							8	200:1
							Х	Special
	1PLE							

Order Example: The 9650/E1104A/G is a 15kV class, standard leakage distance, MultiCore style sensor with a 600A:10V current output ratio, a 1400:1 voltage output ratio, standard conductor keepers, a cast-in Amphenol connector, and with optional ground stud. Cable must be ordered separately.

OVERHEAD: Polysil Sensors

*Required for Clamp-top style

**Multicore only available with 600A:10V Current Signal

***46kV units are available in Substation or Tube type only

Type SVMI Voltage Sensors

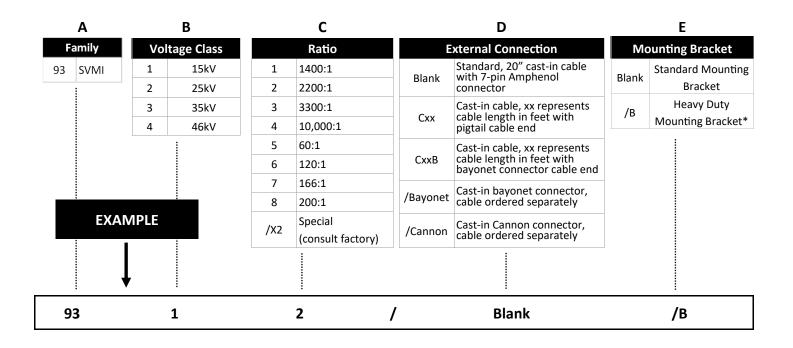
Type SVMI voltage sensors are designed to be used in conjunction with overhead distribution reclosers or switches where high accuracy voltage sensing on one or both sides of the device is desired. CVR/VVO and other advanced smart grid applications where only voltage monitoring is required can also benefit from the use of these sensors.

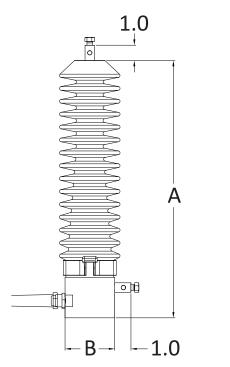
Lindsey Systems type SMVI sensors are high accuracy (0.5%), zero-phase shift resistive voltage sensors contained in a compact insulator. Standard surge arrester mounting hardware may be used for convenient field installation of the SVMI. SVMI sensors are available up through 46kV.

SVMI sensors can also be custom ordered to withstand HiPot testing. Please contact the factory with the specific HiPot requirements.

Compact SVMI Sensors are ideal for:

- Retrofitting older reclosers without built-in voltage sensing or where only high-side voltage sensing is included.
- Replacing or upgrading low accuracy capacitive-style voltage sensors often built into reclosers.


Specifications & Dimensions							
Insulation Class	15kV	kV 25kV 3		46kV			
Voltage Accuracy		0.	5%				
Ratio		By Catalo	g Number				
Operating Temperature Range		-45°/	+80°C				
Stated Accuracy Temperature	-40°/+55°C						
Impulse (BIL)	110	150	200	250			
Leakage Distance	27/686	27/686	37.3/947	37.3/947			
Dry Arc Distance	13.6/345	13.6/345	17.3/439	17.3/439			
Corona (kV extinction)	11	19	26	33			
Height (in./mm) (A)	17.4/442	17.4/442	21.5/546	21.5/546			
Diameter (in./mm) (B)	4/102	4/102	4.5/114	4.5/114			
Weight (lbs./kg)	10/4.5	10/4.5	17/7.7	17/7.7			
Construction		Ро	lysil				



OVERHEAD: Type SVMI Insulator Voltage Sensors

SVMI Ordering Table

Part Number Sequence: <u>A B C / D E</u>

Order Example: The 9312/B is a 15kV class SVMI Sensor with 2200:1 output ration, 20" cast-in cable with Amphenol connector and heavy duty mounting bracket.

Note: All catalog numbers assume the SMVI sensors will be connected to controls, relays, etc., with a 1 MOhm input impedance. If the input impedance is not 1 MOhm, consult factory for correct part number.

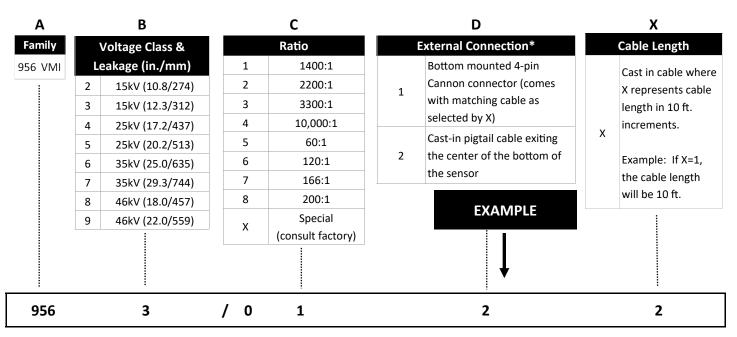
*Heavy duty mounting bracket recommended for applications where the sensor will be mounted on another piece of equipment before truck transportation.

Figure 6: Dimension Drawing of SVMI Sensor. For height and diameter, see table on page 16.

VMI Voltage Sensing Standoff Insulators

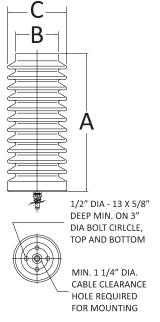
Type VMI voltage sensors are high accuracy (0.5%) voltage sensors contained within industry standard 3-inch bolt-circle post-type apparatus insulators. VMI sensors are ideal for use in air-insulated, pad-mount equipment which require the use of insulators to isolate internal buswork from a cabinet at ground potential. In this application, VMI sensors provide voltage sensing of the supported buswork without the need for additional insulators.

VMI sensors can be custom ordered to withstand the extended application of high voltages as is typical when HiPot testing of the completed switchgear is required. Please contact the factory with specific HiPot requirements.


Specifications

Specifications									
Voltage Accuracy		0.5%							
Ratio				By Catalo	g Number				
Operating Temperature Range				-45°/+	+80°C				
Stated Accuracy Temperature				-40°/+	+55°C				
Insulation Class		15	škV		25	25kV 35kV 4			
Impulse (BIL)	95	95	110	110	150	150	200	250	
Root Part Number	9562	9563	9564	9565	9566	9567	9568	9569	
Height (in./mm) (A)	6.0/152	7.5/190	10.0/254	12.0/305	14.0/356	15.0/381	18.0/457	22.0/559	
Leakage Distance	10.8/274	12.3/312	17.2/437	20.2/513	25.0/635	29.3/744	37.7/958	42.0/1067	
Dry Arc Distance (in./mm)	6.0/152	7.5/190	10.0/254	12.0/305	14.0/356	15.0/381	18.0/457	22.0/559	
Corona (kV extinction)	11	11	11	11	19	19	26	33	
Cantilever strength (lbs./kg)	1200/544	2000/907	2000/907	2000/907	2000/907	2000/907	2000/907	2800/1270	
Weight (lbs./kg)	12/5.4	14/6.3	21/9.5	25/11.3	29/13.1	31/14.1	37/16.8	52/23.6	
Diameter (in./mm) (B) 6.25/159									
Construction	Polysil								

OVERHEAD: VMI Voltage Sensing Standoff Insulators


VMI Voltage Sensing Standoff Insulators Ordering

Part Number Sequence: <u>A B / 0 C D X</u>

Order Example: 9563/0122 is a 7.5" (190mm) tall, TR202 equivalent, 95kV BIL sensor with a 1400:1 voltage ratio and a 20 ft cast-in pigtail cable.

* Note: VMI sensors are also available with bottom-exit or side-exit cast-in connectors and / or with cast-in connectorized cables. Contact the factory for ordering details.

Voltage Class Code (See Ordering Option "B" Above)	TR2xx Equivalent Post-Type Insulator
3	TR202
4	TR205
6	TR208
8	TR210
9	TR214

Most VMI sensors correspond to the dimensional requirements of standard "TR-" number post-type apparatus insulators per ANSI C29-9. VMI sensors do not correspond to the mechanical characteristics. Check your application before use to ensure mechanical requirements are met.

Figure 7: Dimension Drawing of VMI Sensor. For dimensions, see table on page 18.

ElbowSense[™] Underground Voltage Sensors

Lindsey Systems offers a wide range of voltage sensors contained in familiar IEEE Std. 386 underground componentry. These sensors are suitable for pad-mount, metal-clad, submersible and underground applications. All sensors contain precision resistive voltage dividers to provide high accuracy (0.5%) voltage sensing with flat frequency response through the 20th harmonic. Sensors provides an AC voltage output proportional to phase-to-ground voltage.

Optional Metering Accuracy

All ElbowSense underground voltage sensors are also available with 0.3% voltage accuracy.

These higher accuracy sensors are ideal for metering or other applications that would benefit from higher accuracy, such as Volt/VAR Optimization (VVO).

Specifications						
Voltage Accuracy	0	.5% or 0.3%	6			
Ratio	Ву С	Catalog Num	ber			
Operating Temperature Range		-45°/+80°C				
Stated Accuracy Temperature		-40°/+55°C				
Insulation Class	15kV	25kV	35kV			
Impulse (BIL)	95	120	150			
Max Line-Ground (kV)	8.3	15.2	21.1			
Corona (kV extinction)	11	19	26			
Weigh	nt (Ibs./kg)					
Elbow Sensors	4/1.8	4/1.8	N/A			
Tee-Body Sensors	4/1.8	N/A	N/A			
Plug Sensors	8/3.6	8/3.6	9/4.1			

The Lindsey Underground Voltage Sensor Family Includes:

- 200A Load-break Elbow Sensors
- 200A Dead-break Tee-body Sensors
- 600/900A Plug voltage Sensors

UNDERGROUND: ElbowSense[™] Voltage Sensors

Physical Configurations

200A Load-Break Elbow Sensors

Available at 15kV, 25kV and 35kV, these sensors are ideal for applications where connection can be made via a spare bushing well or suitable tee-body connector. The sensors may also be applied with a reducing insert on 600A cable systems.

200A Load-Break Elbow

200A Dead-Break Tee-body Sensors

Available at 15kV, these sensors are ideal where spare bushing wells are not available and all cable circuits are already terminated with elbow connectors.

600/900A Plug Voltage Sensors

Available at 15kV, 25kV, and 35kV, these stainless-steel sensors fit standard 600/900A tee-body connectors.

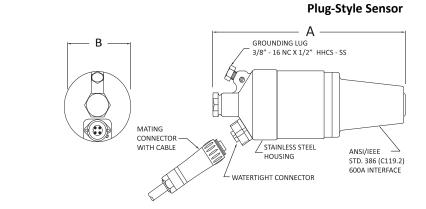
600/900A Plug Voltage

ElbowSense[™] Voltage Sensor Dimensions

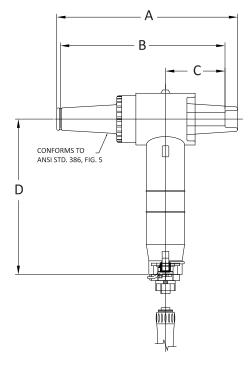
MATES WITH BUSHING INTERFACES THAT CONFORM TO ANSI

STD. 386. FIG. 7

Load-Break Elbow Sensor

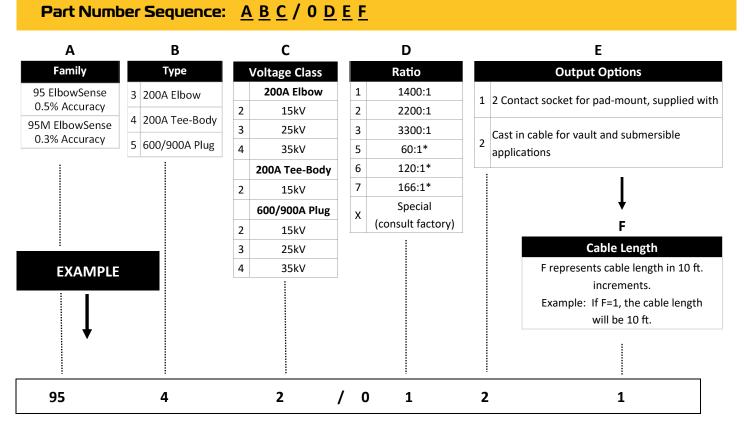

В

- A -


6

 С

- MATING CONNECTOR WITH CABLE


Tee-Body Dead-Break Sensor

22

UNDERGROUND: ElbowSense[™] Voltage Sensors

ElbowSense Voltage Sensor Ordering

Example: 9542/0121 is a 15kV class, 200A dead-break, 0.5% accuracy, T-body sensor with a 1400:1 ratio output with a cast-in 10 foot cable.

*Note: Not available with 0.3% metering accuracy.

Sensor Dimensions	Α	В	С	D				
		Inches (mm)						
Elbow Sensor, 15kV	7.0 (178)	10.0 (253)	3.5 (88)	-				
Elbow Sensor, 25kV/35kV	7.7 (196)	10.0 (253)	3.9 (99)	-				
Tee-Body Sensor, 15kV	10.3 (263)	9.4 (239)	3.4 (86)	8.9 (226)				
Plug Sensor, 15kV	9.4 (238)	3.3 (83)	-	-				
Plug Sensor, 25kV	9.4 (238)	3.3 (83)	-	-				
Plug Sensor, 35kV	10.6 (270)	3.5 (89)	-	-				

ElbowSense[™] Current Sensors

Lindsey Systems offers a variety of current sensors for use in underground, pad-mount, and specific overhead applications. All current sensors are rated 600V and are intended to be used with either insulated medium voltage conductors, or low voltage neutral conductors.

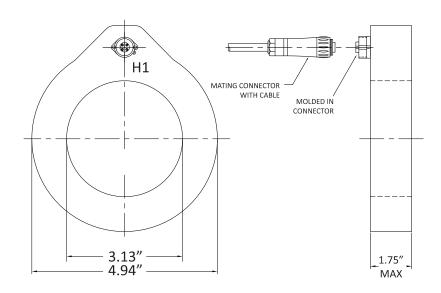
ElbowSense Ring-Style Current Sensor

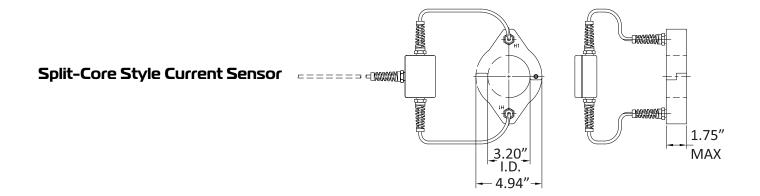
This air-core CT based sensor is watertight and suitable for use in pad-mount, metal-clad, and submersible vault applications. It offers high accuracy (to 0.3%), no phase shift, and flat harmonic response through the 20th harmonic. Choose from cast-in cables or connectors. Pigtail cable is included per ordered part number.

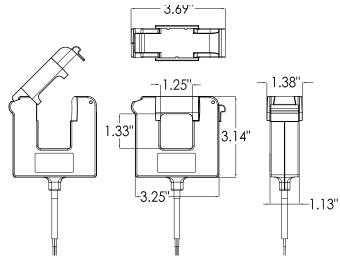
ElbowSense Split-Core Current Sensor

This sensor incorporates the same current sensor as used in Lindsey Systems' MultiCore style overhead line sensors (see page 4 for a description). The split-core design provides installation flexibility by eliminating the need to slip the sensor over a cable's separable connector. It is suitable for use in pad-mount and metal-clad applications. The split-core sensor offers 1% current accuracy and no phase shift at fundamental frequency. It is not recommended for harmonic measurement applications.

Neutral Current Sensor

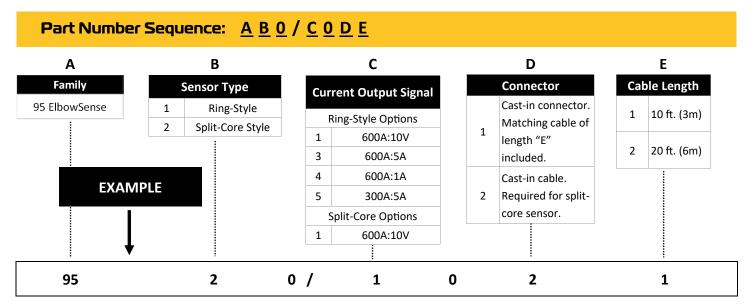

The Lindsey Systems' neutral current sensor is commonly used to sense neutral-to-ground current in small capacitor banks, including both pole-mounted and pad-mount. The voltageoutput sensor has a top which can be opened for easy installation around conductors up to 1.25" (30mm) in diameter. The sensor has 1% accuracy and comes standard with a 35 ft (10.5m) cast-in cable with pig-tail leads. Connectorized versions are also available. The sensor is rated IP68.





ElbowSense[™] Current Sensors

Ring Style Current Sensor



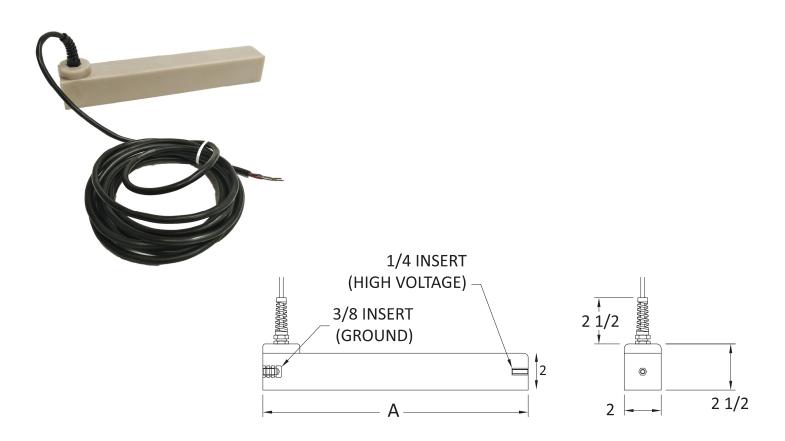
Neutral Current Sensor

ElbowSense[™] Current Sensor Ordering

Example: 9520/1021 is a split-core style current sensor, 600A:10V ratio, with 10ft. (3m) cast in cable. **Note:** For other options, contact the Factory.

ElbowSense Current Sensor Specifications								
Sensor Style Ring-Type								
Ratio	600A:5A	600A:1A	300A:5A	600A:10V	600A:10V			
Burden	0.9 Ohms, MAX	22.5 Ohms, MAX	0.22 Ohms, MAX	10kOhm, MIN	1 Mohm, MIN			
Max. Open Circuit Voltage @600A	14.5V	88V	8V	10V	10V			
Accuracy	1%	0.3%	2%	1%	1%			
Phase Shift		0 deg	rees nominal, +/- 0	.5°	·			
Operating Temperature Range	e -45°C / +80°C							
Stated Accuracy Temperature	-40°C / +55°C							

Neutral Current Sen	Neutral Current Sensor Ordering Table				
Accuracy	1%	А	В	/	Х
Part No.	9525	Family	Connector		Cable Length
Output Ratio	100A:10VAC	9525	Blank - Pigtail		Blank– 35 ft. (10.7m)
Insulation Voltage Class	600 VAC		C (4-pin)*		X (ft.)
Minimum Load	200 kOhm				multiples of 10 ft.
I					
			S (7-pin)**		


*for use with Eaton CBC8000 control and most Lindsey junction boxes

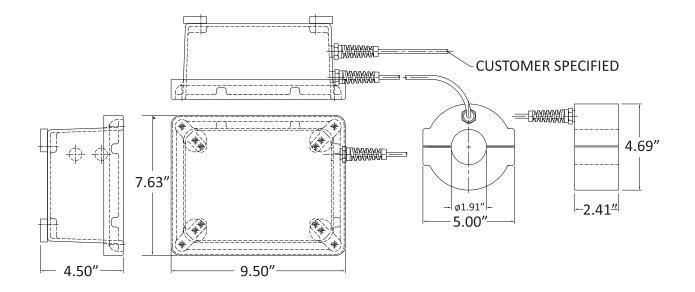
** for use with SEL-734B, Beckwith M6283A, and other controls

SF6 Voltage Sensors

SF6 Voltage Sensors

Lindsey Systems' SF6 Voltage sensor provides high accuracy (0.5%) voltage sensing in a package designed for use in SF6-insulated environments. The embedded stud connectors allow for direct buswork connections and allow the sensor to be used as a standoff. All SF6 Voltage sensors come standard with a 15' (4.6m) cast-in pigtail end cable.

Specification and Ordering							
Part No.	R-22466	R-18889					
Voltage Class	15kV	25kV					
BIL	95kV	125kV					
60 Hz Withstand (1 min.)	30kV	60kV					
Output Ratio	1400:1	1400:1					
Minimum Load	1 MOhm	1 MOhm					
Length (A)	10 3/8″ (265mm)	14 3/8" (365 mm)					
Weight	4 lbs. (1.8 kg)	6 lbs. (2.7 kg)					


Underground Power Supply

Lindsey Systems' Underground Power supply is ideal for use when automating legacy pad-mount or underground switchgear without auxiliary power availability. Lindsey's patented underground power supply installs quickly and easily to provide a self-contained source of 12 VDC power for meters, radios, and controls. Continuous power back-up is provided via an integral LiFePO4 battery.

Method of Operation

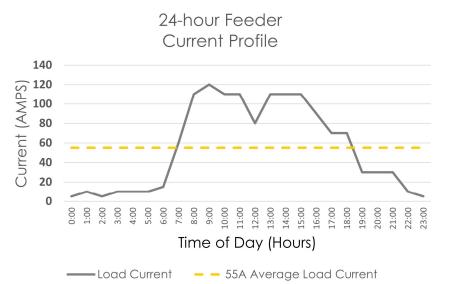
The 600V class CT harvests power from any non-magnetically shielded phase of a 200A/600A underground cable system. If the amount of power required by the connected control/ communication equipment exceeds the power produced by the harvesting circuit, the balance is drawn from the battery. If more power is produced by the harvesting circuit than needed, the excess is used to charge the battery. Additional CTs are available to lower the minimum current required. Consult factory for more information.

Underground Power Supply

Use the following formula* to determine the minimum average daily load current (I_{AVE}) required to flow through the cable to which the harvesting CT is connected. This is the amount of line current which will produce sufficient power to supply the connected control/ communications equipment.

 $I_{AVE} = (I_{DC} \times 63) + 11$ Amps

Note that a minimum of 11A is required for charging of the battery to occur.


Example:

You are connecting communications and control equipment that draws a total of 700mA at 12VDC. Your feeder must have an average daily current of 55A.

An example daily load profile can be seen below.

 $I_{AVE} = (0.7 \times 63) + 11 = 55A$

*Underground power supplies with serial numbers below 1100 follow the formula $I_{AVE} = (I_{DC} \times 66) + 27$

Specifications and Ordering						
Catalog No.	9251					
DC Output Voltage	12.8VDC nominal, 14.6VDC max					
DC Output Current	4.0A max					
Battery	12.8VDC, 4.5 or 9.0 Amp-hour					
Operating Temp.	-20C to 60C (-4F to 140F)					
Power Supply/CT Weight	6.8 or 7.3vkg (15 or 17 lbs.)					
Mount	Magnetic (Clip mount optional)					

Sensor Cables and Castite[™] Junction Boxes

Achieving the performance and accuracy of Lindsey Systems' medium voltage sensors requires the use of cable systems which will not degrade their performance. Lindsey Systems sensor's design and calibration process includes the impedance characteristics of Lindsey Systems' cables. Lindsey Systems produces a wide range of cables ranging from single-phase, voltage-only styles, to prefabricated 4-to-1 cables encompassing all three phase plus neutral sensors. For more information and other options, refer to the Sensor Cable Assemblies catalog available on the Lindsey website.

Cable Features

- Controlled impedance across the sensor's operating temperature range.
- Proper signal segregation and shielding within the cable to eliminate crosstalk and ensure low noise.
- A selection of cable termination options.
- Gold-line cables are specifically designed to interface with High Voltage Accuracy GEN2 sensors. High-Accuracy Gold-Line cables are required to maintain the 0.2% voltage accuracy.

Castite Junction Boxes

CasTite junction boxes are fully molded, tamperproof, watertight junction boxes designed to gather outputs from multiple sensors. A molded in drop cable provides easy connection to a control cabinet located lower on a pole. Armored cable options available. Contact Lindsey for available configurations.

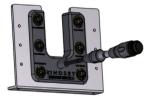
Cable Termination Options

Pigtail Cable End Provides ease of connection to terminal blocks.

Bayonet Connector

A metal bayonet-style water-proof connector that "snaps" when closed, eliminating risk of over-and under-tightening. Sealed from the environment, it remains waterproof even if the connectors are left exposed to the elements.

Amphenol Connector


A plastic, threaded, water-proof connector for single-phase applications.

ITT Cannon Connector

A metal, threaded, water-proof connector for single-phase applications.

Multi-pin Connectors

Three- and four-to-one cables are available which terminate into a single 14- or 16pin connector favored by control manufacturers including Beckwith, Eaton/Cooper, and SEL. These simplify connection of three phase sensor installations.

Sensor Cables and Castite™ Junction Boxes

Single Phase Cables

Part Number										
Sensor End						Cable End				
Connector	# Pins	Current Only	Voltage Only	Voltage & Current	Length in ft.	Pigtail	ITT Cannon	Amphenol	Bayonet	Example with 10' Cable
ITT Cannon	2	9610			/XX		N/A	N/A	N/A	9610/10
ITT Cannon	4		9614		/XX		N/A	N/A	N/A	9614/10
ITT Cannon	4			9612	/XX		N/A	N/A	N/A	9612/10
Amphenol	4	9-587A			/XX		N/A	N/A	N/A	9-587A/10
Amphenol	7		9614A		/XX		N/A	N/A	N/A	9614A/10
Amphenol	4		9-587P		/XX		N/A	N/A	N/A	9-587P/10
Amphenol	4			9-587	/XX		N/A	N/A	N/A	9-587/10
Amphenol	7			9612A	/XX		N/A	N/A	N/A	9612A/10
Bayonet****	4	9620		9620	/XX/		R-21622	9-587	N/A	9620/10 (pigtail)
Bayonet****	4		9620P		/XX/		R-21622	9-587	N/A	9620P/10 (pigtail)
Bayonet****	4	9-789	9-789	9-789	/XX/	N/A	N/A	N/A	9-793	9-789/10/9-793

3-to-1 Multi Phase Cables (All cables accommodate voltage & current signals)

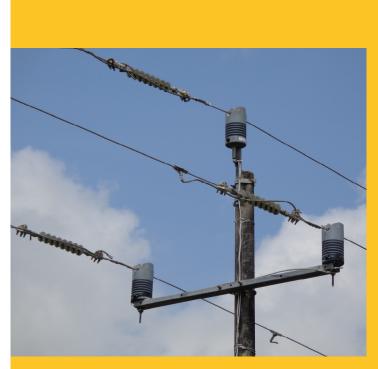
Part Number								
Sensor End Connector	3-to-1	Length in ft. for Phase Cables	14-Pin Amphenol Control End Connector*	8-Pin Amphenol Control End Connector**	Example with 40' Phase Cables			
ITT Cannon	9612	/XX	/R-22102		9612/40/R-22102			
Amphenol	9-587	/xx	/R-22102		9-587/40/R-22102			
Amphenol	R-22971	/xx		(included)	R-22971/40			
Bayonet****	9620	/XX	/R-22102	/R-22978	9620/40/R-22102			

4-to-1 Multi Phase Cables with Neutral Current Sensor*** Connector

Part Number									
Sensor End Connector	Neutral End Connector	4-to-1	Length in ft. for Phase Cables	Length in ft. for Neutral Cable	14-Pin Amphenol Control End Connector	8-Pin Amphenol Control End Connector	Example with 40'Phase and 35' Neutral Cables		
Amphenol	7-pin Amphenol*	R-22748	/xx	,ΥΥ		(included)	R-22748/40,35		
Amphenol	4-pin Amphenol**	R-22970	/XX	,YY	(included)		R-22970/40,35		
Bayonet****	7-pin Amphenol*	9620	/xx	,YY	/R-22102		9620/40,35/R-22102		
Bayonet****	4-pin Amphenol**	9620	/XX	,ΥΥ		/R-22978	9620/40,35/R-22978		

Notes:

* This type of connector is commonly used with Beckwith and SEL controls


** This type of connector is commonly used with Eaton/Cooper controls

*** The sensor end of neutral cables will have a connector to mate to the connector on the Lindsey Neutral Sensor

(P/N R-22981X). The neutral sensor cable is usually ordered to be slightly shorter than the phase cable to account for the length of cable that comes with the neutral sensor.

****Any cables with bayonet connectors are also available with Gold Line High Accuracy conductors. Add /HA to the end of any catalog number to specify. For example, a 9620/40 cable in a high accuracy version would be part number 9620/40/HA.

About Lindsey Systems

Lindsey Systems is recognized globally as an innovator in the electric power industry. As a supplier of systems, products, and product solutions for the transmission and distribution of electricity, Lindsey enables utilities to meet the challenges of the modern-day electrical grid.

With over 75 years of experience and a reputation as a thought leader in the industry, Lindsey Systems' products are known around the world for reliability and performance.

Lindsey is ISO-9001, ISO-14001 and CSA W47.2 Certified.

For more information, visit www.Lindsey-USA.com.

Thoughtful Solutions in Medium Voltage Sensors

Lindsey Manufacturing Co., dba Lindsey Systems 760 N. Georgia Avenue | Azusa, CA 91702 USA Tel. +1-626-969-3471 | www.lindsey-usa.com

©2023 Lindsey Systems, Lindsey, GEN2, ELBOWSENSE, High Accuracy Sensors and CasTite are trademarks or registered trademarks of Lindsey Manufacturing Co. U.S. Patent 7,633,262, 7,633,262 and other U.S. and foreign patents pending.

Specifications subject to change without notice.

Publication Number 09B-003 MV Sensors • February 2024